Instability analysis of the split-step Fourier method on the background of a soliton of the nonlinear Schrödinger equation

نویسنده

  • T. I. Lakoba
چکیده

We analyze a numerical instability that occurs in the well-known split-step Fourier method on the background of a soliton. This instability is found to be very sensitive to small changes of the parameters of both the numerical grid and the soliton, unlike the instability of most finite-difference schemes. Moreover, the principle of “frozen coefficients”, in which variable coefficients are treated as “locally constant” for the purpose of stability analysis, is strongly violated for the instability of the split-step method on the soliton background. Our analysis quantitatively explains all these features. It is enabled by the fact that the period of oscillations of the unstable Fourier modes is much smaller than the width of the soliton. Our analysis is different from the von Neumann analysis in that it requires spatially growing or decaying harmonics (not localized near the boundaries) as opposed to purely oscillatory ones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability analysis of the split-step Fourier method on the background of a soliton of the nonlinear Schrödinger equation

We analyze a numerical instability that occurs in the well-known split-step Fourier method on the background of a soliton. This instability is found to be very sensitive to small changes of the parameters of both the numerical grid and the soliton, unlike the instability of most finite-difference schemes. Moreover, the principle of “frozen coefficients”, in which variable coefficients are treat...

متن کامل

Square Lattice Elliptical- Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm

 In this paper, we investigate the evolution of supercontinuum and femtosecond optical pulses generation through square lattice elliptical-core photonic crystal fiber (PCF) at 1550 nm by using both full-vector multipole method (M.P.M) and novel concrete algorithms: symmetric  split-step Fourier (SSF) and  fourth order Runge Kutta (RK4) which is an accurate method to solve the general  nonlinear...

متن کامل

On the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative

The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...

متن کامل

new analytical method based on Riccati equation for finding Soliton solutions of Nonlinear Lakshmanan-Porsezian-Daniel (LPD) equation

In this present study analytical method based on Riccati Equation as for converting the Nonlinear Lakshmanan-Porsezian-Daniel (LPD) equation into the nonlinear ODE and finding soliton solutions of this sustem discused. Obtaining solutions are new and obtained from wave transformation. The obtained results show that the presented method is effective and appropriate for solving nonlinear differen...

متن کامل

Instability of Soliton Solutions to the Schamel-nonlinear Schrödinger Equation

A variational method is used to obtain the growth rate of a transverse long-wavelength perturbation applied to the soliton solution of a nonlinear Schrödinger equation with a three-half order potential. We demonstrate numerically that this unstable perturbed soliton will eventually transform into a cylindrical soliton. Keywords—soliton, instability, variational method, spectral method

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010